
www.manaraa.com

Acta Mathematica Sinica, English Series

Jul., 2016, Vol. 32, No. 7, pp. 845–855

Published online: June 15, 2016

DOI: 10.1007/s10114-016-4686-1

Http://www.ActaMath.com

Acta Mathematica Sinica, 
English Series
© Springer-Verlag Berlin Heidelberg & 
      The Editorial Office of  AMS  2016

Induced Subgraphs with Large Degrees at End-vertices

for Hamiltonicity of Claw-free Graphs

Roman ČADA
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Abstract A graph is called claw-free if it contains no induced subgraph isomorphic to K1,3. Matthews

and Sumner proved that a 2-connected claw-free graph G is Hamiltonian if every vertex of it has degree

at least (|V (G)| − 2)/3. At the workshop C&C (Novy Smokovec, 1993), Broersma conjectured the

degree condition of this result can be restricted only to end-vertices of induced copies of N (the graph

obtained from a triangle by adding three disjoint pendant edges). Fujisawa and Yamashita showed that

the degree condition of Matthews and Sumner can be restricted only to end-vertices of induced copies

of Z1 (the graph obtained from a triangle by adding one pendant edge). Our main result in this paper

is a characterization of all graphs H such that a 2-connected claw-free graph G is Hamiltonian if each
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end-vertex of every induced copy of H in G has degree at least |V (G)|/3 + 1. This gives an affirmative

solution of the conjecture of Broersma up to an additive constant.
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1 Introduction

We use Bondy and Murty [2] for terminology and notation not defined here and consider finite
simple graphs only.

Let G be a graph. For a vertex v ∈ V (G) and a subgraph H of G, we use NH(v) to denote
the set, and dH(v) the number, of neighbors of v in H, respectively. We call dH(v) the degree
of v in H. For x, y ∈ V (G), an (x, y)-path is a path connecting x and y. If x, y ∈ V (H), the
distance between x and y in H, denoted by dH(x, y), is the length of a shortest (x, y)-path in
H. When no confusion occurs, we will denote NG(v), dG(v) and dG(x, y) by N(v), d(v) and
d(x, y), respectively.

Let G be a graph and G′ a subgraph of G. If G′ contains all edges xy ∈ E(G) with
x, y ∈ V (G′), then G′ is called an induced subgraph of G (or a subgraph induced by V (G′)). For
a given graph H, we say that G is H-free if G contains no induced copy of H. If G is H-free,
then we call H a forbidden subgraph of G. Note that if H1 is an induced subgraph of a graph
H2, then an H1-free graph is also H2-free.

We first give a fundamental sufficient degree condition for hamiltonicity of graphs.

Theorem 1.1 (Dirac [6]) Let G be a graph on n ≥ 3 vertices. If every vertex of G has degree
at least n/2, then G is Hamiltonian.

The graph K1,3 is called the claw, and its only vertex of degree 3 is called its center. For a
given graph H, we call a vertex v of H an end-vertex of H if dH(v) = 1. Thus a claw has three
end-vertices. In this paper, we use the common term claw-free graphs for K1,3-free graphs.

Hamiltonian properties of claw-free graphs have been well studied by many graph theorists.
The lower bound on the degrees in Dirac’s theorem can be lowered to roughly n/3 in the case
of (2-connected) claw-free graphs.

Theorem 1.2 (Matthews and Sumner [8]) Let G be a 2-connected claw-free graph on n ver-
tices. If every vertex of G has degree at least (n − 2)/3, then G is Hamiltonian.

Forbidden subgraph conditions for hamiltonicity of graphs have also received much atten-
tion. As K2-free graphs are precisely the edgeless graphs, it is natural to assume that, through-
out this paper, all forbidden subgraphs under consideration will have at least three vertices.
We also note that every connected P3-free graph is a complete graph, and thus it is trivially
Hamiltonian if it has at least 3 vertices. It is in fact easy to show that P3 is the only connected
graph R such that every 2-connected R-free graph is Hamiltonian.

Bedrossian [1] characterized all the pairs of forbidden subgraphs for hamiltonicity, excluding
P3.

Theorem 1.3 (Bedrossian [1]) Let R and S be connected graphs with R, S �= P3 and let G be
a 2-connected graph. Then G being R-free and S-free implies G is Hamiltonian if and only if
(up to symmetry) R = K1,3 and S = P4, P5, P6, C3, Z1, Z2, B, N or W (see Figure 1).
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Figure 1 Graphs Pi, C3, Zi, B, N and W

Note here that the claw is always one of the forbidden subgraphs. Also recall that a P4-free
graph is P5-free, etc., so the relevant graphs for S (in Theorem 1.3) are in fact P6, N and W .
All the other listed graphs are induced subgraphs of P6, N or W .

At the workshop Cycles and Colourings 93 (Slovakia), Broersma [3] proposed the following
conjecture.

Conjecture 1.4 (Broersma [3]) Let G be a 2-connected claw-free graph on n vertices. If every
vertex of G which is an end-vertex of an induced copy of N in G, has degree at least (n− 2)/3,
then G is Hamiltonian.

This conjecture is still open. Fujisawa and Yamashita [7] obtained a similar result as follows.

Theorem 1.5 (Fujisawa and Yamashita [7]) Let G be a 2-connected claw-free graph on n

vertices. If every vertex which is an end-vertex of an induced copy of Z1 in G has degree at
least (n − 2)/3, then G is Hamiltonian.

Let G be a graph on n vertices and H a given graph. We say that G satisfies Φ(H, k) if for
every vertex v which is an end-vertex of an induced copy of H in G, d(v) ≥ (n + k)/3.

In any connected graph, a vertex which is not an end-vertex of an induced P3 will be
adjacent to all other vertices. Thus a graph satisfying Φ(P3,−2) implies that every vertex
of it has degree at least (n − 2)/3. By Theorem 1.2, such a graph is Hamiltonian if it is 2-
connected and claw-free. Also note that Theorem 1.5 implies that every 2-connected claw-free
graph satisfying Φ(Z1,−2) is Hamiltonian. Motivated by Conjecture 1.4 and Theorem 1.5, we
consider in this paper, the following question: For which graphs H, every 2-connected claw-free
graph satisfying Φ(H,−2) is Hamiltonian?

First, for a given connected graph H, note that if a graph is H-free, then it naturally
satisfies Φ(H,−2). To guarantee a 2-connected claw-free graph satisfying Φ(H,−2) is Hamil-
tonian, by Theorem 1.3, we can get that H must be one of the graphs in {P3, P4, P5, P6,

C3, Z1, Z2, B, N, W} (to avoid the discussion of trivial cases, we assume that H has at least
three vertices). Note that C3 has no end-vertex, and every graph satisfies Φ(C3,−2) natu-
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rally. Since not every 2-connected claw-free graph is Hamiltonian, C3 does not meet our result.
Another counterexample is Z2. The graph in Figure 2 is 2-connected claw-free and satisfies
Φ(Z2,−2) but it is not Hamiltonian. Thus we have the following result.
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�

�
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� � �

Figure 2 A graph satisfying Φ(Z2,−2)

Proposition 1.6 Let H be a connected graph on at least 3 vertices and let G be a 2-connected
claw-free graph. If G satisfying Φ(H,−2) implies G is Hamiltonian, then H = P3, P4, P5, P6, Z1,

B, N or W .

What about the converse? Is every 2-connected claw-free graph satisfying Φ(H,−2) Hamil-
tonian for all the graphs H listed in Proposition 1.6?

Note that if a graph G satisfies Φ(Pi, k), then it also satisfies Φ(Pj , k) for j ≥ i. Also note
that if G satisfies Φ(Z1, k), then it also satisfies Φ(B, k); and if G satisfies Φ(B, k), then it
also satisfies Φ(N, k). (We remark that a graph satisfying Φ(Z2, k) cannot ensure it satisfies
Φ(W, k), although Z2 is an induced subgraph of W .) So, in the following, we just consider the
three graphs P6, N and W . We propose the following problem:

Problem 1.7 Let H = P6, N or W . Is every 2-connected claw-free graph satisfying Φ(H,−2)
Hamiltonian?

We believe that the answer to Problem 1.7 is positive, but the proof may need more technical
discussions. However, we can prove a slightly weaker result as follows.

Theorem 1.8 Let H = P6, N or W , and let G be a 2-connected claw-free graph. If G satisfies
Φ(H, 3), then G is Hamiltonian.

Note that the graph in Figure 2 satisfies Φ(Z2, 3) when k ≥ 6. Combining with Proposi-
tion 1.6 and Theorem 1.8 yields our main theorem.

Theorem 1.9 Let H be a connected graph on at least 3 vertices and let G be a 2-connected
claw-free graph. Then G satisfying Φ(H, 3) implies G is Hamiltonian, if and only if H =
P3, P4, P5, P6, Z1, B, N or W .

Note that the case of H = N in Theorem 1.9 shows that every 2-connected claw-free graph
G is Hamiltonian if every vertex of G which is an end-vertex of an induced copy of N , has
degree at least |V (G)|/3 + 1. This gives an affirmative solution of the conjecture of Broersma
up to an additive constant.



www.manaraa.com

Induced Subgraphs for Hamiltonicity of Claw-free Graphs 849

2 Some Preliminaries

Two famous conjectures in the field of hamiltonicity of graphs are Thomassen’s conjecture [10]
that every 4-connected line graph is Hamiltonian and Matthews and Sumner’s conjecture [8]
that every 4-connected claw-free graph is Hamiltonian. Ryjáček proved these two conjectures
are equivalent. One major tool for the proof is his closure theory [9]. Now we introduce
Ryjáček’s closure theory, which we will use in our proof.

Let G be a claw-free graph and x a vertex of G. Following the terminology of Ryjáček [9],
we call x an eligible vertex if N(x) induces a connected graph but is not a clique in G. The
completion of G at x, denoted by G′

x, is the graph obtained from G by adding all missing edges
uv with u, v ∈ N(x).

Note that if a vertex, say v, has a complete neighborhood in G, i.e., G[N(v)] is complete,
then it also has a complete neighborhood in G′

x; also note that if P ′ is an induced path in G′
x,

then there is an induced path P in G with the same end-vertices such that V (P ) ⊂ V (P ′)∪{x}.
Let G be a claw-free graph. The closure of G, denoted by cl(G), is the graph defined by a

sequence of graphs G1, G2, . . . , Gt, and vertices x1, x2, . . . , xt−1 such that
(1) G1 = G, Gt = cl(G);
(2) xi is an eligible vertex of Gi, Gi+1 = (Gi)′xi

, 1 ≤ i ≤ t − 1; and
(3) Gt has no eligible vertices.
By c(G) we denote the length of a longest cycle of G.

Theorem 2.1 (Ryjáček [9]) Let G be a claw-free graph. Then
(1) the closure cl(G) is well defined;
(2) there is a triangle-free graph H such that cl(G) is the line graph of H; and
(3) c(G) = c(cl(G)).

Clearly every vertex has degree in cl(G) not less than that in G. Ryjáček proved that if G

is claw-free, then so is cl(G). A claw-free graph is said to be closed if it has no eligible vertices.
The following properties of a closed claw-free graph are obvious, and we omit the proofs.

Lemma 2.2 Let G be a closed claw-free graph. Then
(1) every vertex is contained in exactly one or two maximal cliques;
(2) two distinct maximal cliques have at most one common vertex ;
(3) if two vertices are nonadjacent, then they have at most two common neighbors; and
(4) if a vertex has two neighbors in a maximal clique, then it is contained in the clique.

Now we introduce some new terminology which is useful for our proof. Let G be a claw-free
graph and K a maximal clique of cl(G). We call G[K] a region of G. For a vertex v of G,
we call v an interior vertex if it is contained in only one region, and a frontier vertex if it is
contained in two distinct regions. For two vertices u, v of G, we say that they are associated if
they are in a common region, and dissociated otherwise. We use the notations u ∼ v (u � v) to
express the statement that u and v are associated (dissociated). So two vertices are associated
in G if and only if they are adjacent in cl(G). Now we can reformulate Lemma 2.2 as follows.

Lemma 2.3 Let G be a claw-free graph. Then
(1) every vertex is either an interior vertex of a region, or a frontier vertex of two regions;
(2) every two regions are either disjoint or have only one common vertex ;
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(3) every two dissociated vertices have at most two common neighbors; and

(4) if a vertex is associated with two vertices in a common region, then it is also contained
in the region.

We can also get the following

Lemma 2.4 Let G be a claw-free graph. Then

(1) if v is a frontier vertex of two regions R, R′, then NR(v), NR′(v) are cliques;

(2) if R is a region of G, then cl(R) is complete;

(3) if v is a frontier vertex and R is a region containing v, then v has an interior neighbor
in R or R is complete and has no interior vertices; and

(4) if u ∼ v, then there is an induced path from u to v such that all internal vertices are
interior vertices in the region containing u and v.

Proof (1) If there are two neighbors x, x′ of v in R such that xx′ /∈ E(G), then let y be a
neighbor of v in R′. Note that y is nonadjacent to x, x′; otherwise it will be contained in R.
Now the subgraph induced by {v, x, x′, y} is a claw, a contradiction. Thus NR(v), and similarly,
NR′(v), is a clique.

(2) Let K = V (R). Let G1, G2, . . . , Gt be the sequence of graphs, and x1, x2, . . . , xt−1

the sequence of vertices in the definition of cl(G). Note that for every i ≤ t − 1, xi has a
complete neighborhood in Gi+1, and then in cl(G). This implies that xi is an interior vertex.
Thus if xi /∈ K, then the completion of Gi at xi does not change the structure of Gi[K]. Let
xk1 , . . . , xkt′−1

be the subsequence of x1, . . . , xt−1 containing all vertices xki
∈ K. Note that

NGki
(xki

) ⊂ K. Thus xki
is an eligible vertex of Gki

[K] and (Gki
[K])′xki

= Gki+1[K]. Thus
we have that cl(R) = cl(G)[K] is the complete subgraph of cl(G) corresponding to R.

(3) If R is complete in G, then either v has an interior neighbor in R or R has no interior
vertices. Now we assume that R is not complete. By (2), cl(R) = cl(G)[V(R)] is complete. This
implies that R has at least one eligible vertex, and then, R has at least one interior vertex. If v

is nonadjacent to any interior vertex in R, then the completion of an eligible vertex in R does
not change the neighborhood of v. Thus v will have no interior neighbors in R in the closure
cl(R), a contradiction to that cl(R) is a clique.

(4) Let R be the region of G containing u and v. We use the notation in the proof of (2). Note
that for an induced path P ′ in Gki+1 [V (R)] connecting u and v, there is also an induced path
P in Gki

[V (R)] connecting u and v such that V (P ) ⊂ V (P ′) ∪ {xki
}. This implies that there

is an induced path P in R connecting u and v such that V (P ) ⊂ {u, v} ∪ {xki
: 1 ≤ i ≤ t′ − 1}.

Note that every xki
is an interior vertex of R. The proof is complete. �

In the case that u ∼ v, we use Π[uv] to denote an induced path from u to v such that all
internal vertices are interior vertices in the region containing u and v. For an induced path
P = v0v1v2 · · · vk in cl(G), we denote Π[P ] = Π[v0v1]v1Π[v1v2]v2 · · · vk−1Π[vk−1vk] (note that
Π[P ] is an induced path of G).

Following [4], we denote by P the class of all graphs that are obtained by taking two
disjoint triangles a1a2a3a1, b1b2b3b1, and by joining every pair of vertices {ai, bi} by a path
Pki

= aic
1
i c

2
i · · · cki−2

i bi for ki ≥ 3 or by a triangle aibiciai. We denote a graph from P by
Px1,x2,x3 , where xi = ki if ai, bi are joined by a path Pki

, and xi = T if ai, bi are joined by a
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triangle.

Theorem 2.5 (Brousek [4]) Every non-Hamiltonian 2-connected claw-free graph contains an
induced subgraph in P.

We mention the following result deduced from Brousek et al. [5] to complete this section.

Theorem 2.6 (Brousek et al. [5]) Let G be a claw-free graph. If G is N-free, then cl(G) is
also N-free.

3 Proof of Theorem 1.8

Assume that G is not Hamiltonian. By Theorems 2.1 and 2.5, cl(G) contains an induced
subgraph Px1,x2,x3 ∈ P. We use the notation ai, bi, ci and cj

i defined in Section 2. If xi = ki,
then let P i be the path aic

1
i c

2
i · · · cki−2

i bi; if xi = T , then let P i = aibi. Let A be the region of
G containing the vertices a1, a2, a3, B be the region of G containing the vertices b1, b2, b3. Note
that A and B are possibly not disjoint. If they are not disjoint, then let c be the only common
vertex of A and B. Clearly, ai, bi and c (if exists) are all frontier vertices. If xi = T , then let
a′

i be the successor of ai in Π[aici] and b′i be the successor of bi in Π[bici]; if xi = ki, then let
a′

i be the successor of ai in Π[aic
1
i ] and b′i be the successor of bi in Π[bic

ki−2
i ].

In this section, we say that a vertex is hefty if it has degree at least n/3 + 1.

Claim 1 Let v1, v2, v3 be three pairwise nonadjacent vertices of G.
(1) If v1 � v2, v1 � v3 and v2, v3 have at most one common neighbor, then one of v1, v2, v3

is not hefty.
(2) If v1 � v2, v1 � v3 and v2 � v3, then one of v1, v2, v3 is not hefty.

Proof (1) By Lemma 2.3 (3), |N(v1) ∩ N(v2)| ≤ 2 and |N(v1) ∩ N(v3)| ≤ 2. Note that
|N(v2) ∩ N(v3)| ≤ 1. If all these three vertices are hefty, i.e., d(vi) ≥ n/3 + 1 for i = 1, 2, 3,
then

n ≥ 3 +
∑

1≤i≤3

d(vi) −
∑

1≤i<j≤3

|N(vi) ∩ N(vj)| ≥ 3 + 3
(

n

3
+ 1

)
− 5 = n + 1,

a contradiction.
(2) By (1) and Lemma 2.3 (3), each of {v1, v2}, {v1, v3}, {v2, v3} has exactly two common

neighbors. Let uij and u′
ij be the two common neighbors of vi and vj . By Lemma 2.3 (4),

uij � u′
ij . This implies that all the three vertices v1, v2, v3 are frontier vertices. Moreover, by

applying a similar argument as in (1), we have

n ≥ 3 + d(v1) + d(v2) + d(v3) − 6 ≥ 3 ·
(

n

3
+ 1

)
− 3 = n.

This implies that every vertex of G is adjacent to at least one vertex in {v1, v2, v3}. Thus
G consists of the six regions containing v1, v2 and v3, and all the six regions are cliques by
Lemma 2.4 (1).

Since u12 � u′
12 and u13 � u′

13 and all the four vertices are adjacent to v1, we have either
u12 ∼ u13 or u12 ∼ u′

13. We assume without loss of generality that u12 ∼ u13, which implies
that u12u13 ∈ E(G). Now we can begin with the cycle C0 = v1u

′
12v2u12u13v3u

′
13v1, and add

other vertices, one by one, to the cycle at the place between two associated vertices, and finally
obtain a Hamilton cycle of G, a contradiction. �
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The case H = P6.

Let P = a′
1a1Π[a1a2]a2Π[P 2]b2Π[b2b3]b3b

′
3. Note that P is an induced copy of Pl with l ≥ 6.

This implies that a′
1, and similarly, a′

2, a
′
3, are hefty. Note that a′

1, a
′
2 and a′

3 are pairwise
dissociated in G, a contradiction to Claim 1.

The case H = N .

Claim 2 There are at least two hefty vertices in A (and similarly, in B).

Proof Let G′ = G[V (A) ∪ {a′
1, a

′
2, a

′
3}]. From Lemma 2.4 (2), we can see that cl(G′) =

cl(G)[V(G′)]. Note that the subgraph of cl(G)[V(G′)] induced by {a1, a
′
1, a2, a

′
2, a3, a

′
3} is an N .

By Theorem 2.6, G′ contains an induced N . This implies that V (G′) contains at least three
pairwise nonadjacent hefty vertices. If two of them are not in A, then we assume without loss
of generality that a′

1, a
′
2 are hefty. Note that the third hefty vertex is in (V (A)∪{a′

3})\{a1, a2}.
This implies that the three hefty vertices are pairwise dissociated, a contradiction to Claim 1. �

Let b, b′ be two hefty vertices in B. Set

Ni = {v ∈ V (A) : dA(a1, v) = i} and j = max{i : Ni �= ∅}.
Note that N0 = {a1} and N1 = NA(a1). In addition, we define that N−1 = {a′

1}. Note that for
any vertex v ∈ Ni, with 1 ≤ i ≤ j, v has a neighbor in Ni−1. Also note that if v has a neighbor
in Ni+1, 1 ≤ i ≤ j − 1, then by Lemma 2.4 (1), v is an interior vertex, especially, v is not a2, a3

and c.

Claim 3 Ni is a clique for all 1 ≤ i ≤ j.

Proof We use induction on i. By Lemma 2.4 (1), N1 is a clique. Now we assume that 2 ≤ i ≤ j.
Note that Ni−1, Ni−2 and Ni−3 are nonempty.

Assume that there are two vertices y, y′ in Ni with yy′ /∈ E(G). If y and y′ have a common
neighbor in Ni−1, then let x be a common neighbor of y and y′ in Ni−1, and w be a neighbor of
x in Ni−2. Then the subgraph induced by {x, w, y, y′} is a claw, a contradiction. This implies
that y and y′ have no common neighbors in Ni−1. Now let x be a neighbor of y in Ni−1 and x′

be a neighbor of y′ in Ni−1. Note that xy′, x′y /∈ E(G). Let w be a neighbor of x in Ni−2 and
let v be a neighbor of w in Ni−3. By the induction hypothesis, xx′ ∈ E(G). If wx′ /∈ E(G), then
the subgraph induced by {x, w, x′, y} is a claw, a contradiction. This implies that wx′ ∈ E(G).
Now the subgraph induced by {w, v, x, y, x′, y′} is an N . Thus the three vertices v, y and y′ are
all hefty.

By Lemma 2.3 (4), v � b or v � b′. We assume without loss of generality that v � b.
Similarly b � y or b � y′, we assume without loss of generality that b � y. Note that b, v, y are
all hefty, b � v, b � y and v, y have no common neighbors. We get a contradiction. �

If both a2 and a3 are in Nj , then let w be a neighbor of a2 in Nj−1, v be a neighbor of w

in Nj−2. By Claim 3 and Lemma 2.4 (1), a2a3, wa3 ∈ E(G). Thus the subgraph induced by
{w, v, a2, a

′
2, a3, a

′
3} is an N . Thus v, a′

2 and a′
3 are three hefty vertices. Note that v, a′

2 and a′
3

are pairwise dissociated, a contradiction. So we assume without loss of generality that a2 /∈ Nj .
Let a2 ∈ Ni, where 1 ≤ i ≤ j−1. Let y be a vertex in Ni+1. Recall that a2 has no neighbors

in Ni+1. Let x be a neighbor of y in Ni, w be a neighbor of a2 in Ni−1 and v be a neighbor
of w in Ni−2. By Claim 3 and Lemma 2.4 (1), a2x, wx ∈ E(G), and the subgraph induced by
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{w, v, x, y, a2, a
′
2} is an N . Thus v, y and a′

2 are three hefty vertices. Note that a′
2 � v, a′

2 � y,
and v, y have no common neighbors, a contradiction.

The case H = W .

Claim 4 For i, j, 1 ≤ i < j ≤ 3, one of the edges in {aiaj , bibj , aibi, ajbj} is not in E(G).

Proof We assume that aiaj , bibj , aibi, ajbj ∈ E(G). By Lemma 2.4 (1), a′
ibi, a

′
jbj ∈ E(G). Let

a be the successor of aj in the path Π[ajak], where k �= i, j. Then the subgraph induced by
{a′

j , aj , a, bj , bi, a
′
i} is a W . Thus a, a′

i, and similarly a′
j , are hefty. Note that a, a′

i and a′
j are

pairwise dissociated, a contradiction. �
As in the case of H = N , we set

Ni = {v ∈ V (A) : dA(a1, v) = i} and j = max{i : Ni �= ∅}.
Note that N0 = {a1}, N1 = NA(a1) and we define additionally N−1 = {a′

1}.
Claim 5 There is a hefty vertex in A\{a1, a2, a3, c} (and similarly, in B\{b1, b2, b3, c}).
Proof We assume on the contrary that there are no hefty vertices in A\{a1, a2, a3, c}.
Claim 5.1 Ni is a clique for all 1 ≤ i ≤ j.

Proof We use induction on i. By Lemma 2.4 (1), N1 is a clique. Now we assume that 2 ≤ i ≤ j.
Note that Ni−1, Ni−2 and Ni−3 are nonempty.

Assume that there are two vertices y, y′ in Ni with yy′ /∈ E(G). Note that y and y′ have no
common neighbors in Ni−1. Let x be a neighbor of y in Ni−1, x′ be a neighbor of y′ in Ni−1,
w be a neighbor of x in Ni−2 and v be a neighbor of w in Ni−3. By the induction hypothesis,
xx′ ∈ E(G). Note that wx′ ∈ E(G); otherwise the subgraph induced by {x, w, x′, y} is a claw.

If y = a2, then the subgraph induced by {x′, w, v, x, a2, a
′
2} and the subgraph induced by

{w, x′, y′, x, a2, a
′
2} are W ’s. Thus v, y′ and a′

2 are three hefty vertices. Note that a′
2 � v

a′
2 � y′, and v, y′ have no common neighbors, a contradiction. So we assume that y �= a2, and

similarly, y �= a3, y′ �= a2, y′ �= a3. This implies that either y or y′ is in A\{a1, a2, a3, c}.
We assume without loss of generality that y ∈ A\{a1, a2, a3, c}. Let P ′ be a shortest path

from w to a1 (note that P ′ consists of the vertex a1 if w = a1). Let w, v and u be the first three
vertices in the path P = P ′a1Π[P 1]b1Π[b1b2]. Then the subgraph induced by {x′, x, y, w, v, u}
is a W . Thus y is a hefty vertex, a contradiction. �

If both a2 and a3 are in Nj , then let w be a neighbor of a2 in Nj−1, v be a neighbor
of w in Nj−2. By Claim 5.1 and Lemma 2.4 (1), a2a3, wa3 ∈ E(G). Let a2, y and z be
the first three vertices in the path P = Π[P 2]b2Π[b2b3]. By Claim 4, a3z /∈ E(G). Then
the subgraph induced by {a3, w, v, a2, y, z} is a W . Let a3, y

′, z′ be the first three vertices
in the path P = Π[P 2]b2Π[b2b1]. By Claim 4, wz′ /∈ E(G). Then the subgraph induced by
{w, a2, a

′
2, a3, y

′, z′} is a W . Thus v, a′
2, and similarly, a′

3, are hefty. Note that v, a′
2 and a′

3 are
pairwise dissociated, a contradiction. So we assume without loss of generality that a2 /∈ Nj .

Let a2 ∈ Ni, where 1 ≤ i ≤ j−1. Let y be a vertex in Ni+1. Recall that a2 has no neighbors
in Ni+1. Let x be a neighbor of y in Ni, w be a neighbor of a2 in Ni−1 and v be a neighbor of
w in Ni−2. Note that a2x, wx ∈ E(G).

If y = a3, then let z = a′
3; and if y = c, then let z be the successor of c in Π[cb3]. Then

the subgraph induced by {a2, w, v, x, y, z} and the subgraph induced by {w, a2, a
′
2, x, y, z} are
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W ’s. Thus v, a′
2 and z are hefty. Note that v, a′

2 and z are pairwise dissociated, a contradiction.
Now we assume that y �= c, a3. Let a2, y

′, z′ be the first three vertices in the path P =
Π[P 2]b2Π[b2b3]. Then the subgraph induced by {w, x, y, a2, y

′, z′} is a W . This implies that y

is hefty, a contradiction. �
Now let a and b be two hefty vertices in A\{a1, a2, a3, c} and B\{b1, b2, b3, c}, respectively.

Since a, b and a′
i are pairwise dissociated, a′

i is not hefty.
By Lemma 2.4 (3), a1 has an interior neighbor in A or a1a ∈ E(G). In any case, a1 has

a neighbor in A\{a2, a3, c}. If a1a2 ∈ E(G), then let v be a neighbor of a1 in A\{a2, a3, c}.
By Lemma 2.4, a2v ∈ E(G). Let a2, x and y be the first three vertices in the path P =
Π[P 2]b2Π[b2b3]. Then the subgraph induced by {v, a1, a

′
1, a2, x, y} is a W . Thus a′

1 is hefty, a
contradiction. This implies that a1a2, and similarly, a1a3, a2a3, is not in E(G).

Claim 6 Ni is a clique for all 1 ≤ i ≤ j.

Proof We use induction on i. By Lemma 2.4 (1), N1 is a clique.
We first consider the case i = 2. Recall that a1a2 /∈ E(G), which implies that a2 /∈ N1. If

a2 ∈ N2, then let z = a′
2, y = a2; and if a2 /∈ N2, then (j ≥ 3 and) let z be a vertex in N3, and

y be a neighbor of z in N2.
We claim that y is adjacent to every vertex in N2\{y}. Assume that yy′ /∈ E(G) for

y′ ∈ N2\{y}. Then y and y′ have no common neighbors in N1. Let x be a neighbor of y in
N1 and x′ be a neighbor of y′ in N1. Then xy′, x′y /∈ E(G). Since xx′ ∈ E(G), the subgraph
induced by {x′, a1, a

′
1, x, y, z} is a W , and this implies that a′

1 is hefty, a contradiction. Thus, as
we claimed, y is adjacent to every vertex in N2\{y}. Now let y′, y′′ be two vertices in N2\{y}.
We claim that y′y′′ ∈ E(G). If y′z ∈ E(G), then (z �= a′

2 and) similarly as the case of y, we
can see that y′ is adjacent to every vertex in N2\{y′}, including y′′. So we assume that y′z,
and similarly, y′′z, is not in E(G). Then the subgraph induced by {y, y′, y′′, z} is a claw, a
contradiction. Thus, as we claimed, N2 is a clique.

Now we assume that 3 ≤ i ≤ j. Note that Ni−1, Ni−2, Ni−3 and Ni−4 are nonempty.
Assume that there are two vertices z and z′ in Ni with zz′ /∈ E(G). Note that z and z′

have no common neighbors in Ni−1. Let y be a neighbor of z in Ni−1 and y′ be a neighbor
of z′ in Ni−1. Then yz′, y′z /∈ E(G). Let x be a neighbor of y in Ni−2, w be a neighbor of x

in Ni−3 and v be a neighbor of w in Ni−4. Then yy′, xy′ ∈ E(G). Now the subgraph induced
by {y′, y, z, x, w, v} is a W . Thus v and z are hefty. Note that b � v, b � z, and v, z have no
common neighbors, a contradiction. �

Recall that a2a3 /∈ E(G), which implies that either a2 or a3 /∈ Nj . Also recall that a2, a3 /∈
N1. We assume without loss of generality that a2 ∈ Ni, where 2 ≤ i ≤ j − 1. Let z be a vertex
in Ni+1, y be a neighbor of z in Ni, x be a neighbor of a2 in Ni−1, w be a neighbor of x in Ni−2

and v be a neighbor of w in Ni−3. By Claim 6 and Lemma 2.4 (1), a2y, xy ∈ E(G). Then the
subgraph induced by {y, a2, a

′
2, x, w, v} is a W . This implies that a′

2 is hefty, a contradiction.
The proof is complete. �
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